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Abstract: Red-Blue pebble game was introduced by Hong and Kung [1]. Given any DAG, 𝑮 =  (𝑽, 𝑬), a configuration 

𝑪 on 𝑮 is a function 𝑪 ∶  𝑽 (𝑮)  →  {𝑹, 𝑩, 𝑶} where 𝑽 (𝑮) can be partitioned into 𝑽𝟏(𝑮), 𝑽𝟐(𝑮) and 𝑽𝟑(𝑮) in such a 

way that 𝑽𝟏(𝑮) comprises of just the vertices having red pebbles (𝑹), 𝑽𝟐(𝑮) is just those have blue pebbles (𝑩), and 

𝑽𝟑(𝑮) is the empty set that is vertices have no pebbles. Define the size |𝑪| of a configuration 𝑪 to be the total number 

of pebbles, that is |𝑪|  =   ∑ 𝑪(𝑽 )⬚
𝒗∈𝑽(𝑮)  . In this paper, we determine the 𝒎𝒊𝒏|𝑪| pebbles used in the completion of 

Red-Blue pebble game for different Directed Acyclic graphs (DAG) such as r-pyramid, and complete r-partite 

graphs. 

Keywords: Red-Blue pebble game, different Directed Acyclic graphs. 

1.   INTRODUCTION 

Here, a graph 𝐺 is a directed acyclic graph with vertices 𝑉(𝐺) and edge set 𝐸(𝐺) is the set of ordered pair of vertices 

(𝑣𝑖 , 𝑣𝑗) such that 𝑖 ≠  𝑗 and 𝑣𝑖 , 𝑣𝑗 ∈  𝑉 (𝐺). We say that a vertex 𝑣𝑖 is a direct predecessor of a vertex 𝑣𝑗 if there is a directed 

edge from 𝑣𝑖  to 𝑣𝑗  and the edge 𝑣𝑖𝑣𝑗  is called the incoming edge of 𝑣𝑗 and outgoing edge of 𝑣𝑖. A vertex in a DAG, with no 

incoming edges is called a source vertex and a vertex with no outgoing edges is called a target vertex.  

We assume that the set of source vertices are different from that of target vertices. Blue pebbles represent data that is stored 

in slow memory and red pebbles represent data that is stored in fast memory [2]. There are no restrictions on the number of 

blue pebbles that can reside on 𝐺 at any given time, but we can never have more than 𝑆 red pebbles on DAG 𝐺 =  (𝑉, 𝐸) 

where 𝑆 represents the size of the fast memory. In the begining there is a blue pebble on each of the source vertices called 

as initial configuration and the game is completed when we have a blue pebble on each of the target vertices called as final 

configuration. 

A pebbling move is an ordered pair of configurations, the second of which follows from the first according to certain 

rules.[3]  

Pebbling move 1 that is 𝑀1 is defined as ”A red pebble may be placed on any vertex that has a blue pebble” i.e.,) Replace 

a blue pebble by a red pebble. 

Pebbling move 2 that is 𝑀2 is defined as ”A blue pebble may be placed on any vertex that has a red pebble” that is replace 

a red pebble by a blue pebble. 

Pebbling move 3 that is 𝑀3 is defined as ”‘Place a red pebble on a vertex for which all immediate predecessors are carrying 

a red pebble”’ (when the vertex has already a blue pebble,  

we replace it). 

Pebbling move 4 that is 𝑀4 is ‘A pebble red or blue may be removed from any vertex’. Since the size of our fast memory 

is limited, we will have to apply moves 𝑀2 and 𝑀4 sometimes. 

A pebbling strategy is a sequence of the pebbling move 𝑀1,𝑀2,𝑀3 and 𝑀4 on the vertices of a DAG, which results in the 

completion of red blue pebble game. 

about:blank
about:blank
https://doi.org/10.5281/zenodo.12723568


International Journal of Mathematics and Physical Sciences Research   ISSN 2348-5736 (Online) 
Vol. 12, Issue 1, pp: (11-17), Month: April 2024 - September 2024, Available at: www.researchpublish.com 

 

Page | 12 
Research Publish Journals 

 

Pebbling moves 𝑀1|𝑀2 represent data movements that consume much time and energy, so we want to minimize their 

number. Each application of 𝑀1 or 𝑀2 counts as one 𝑀1|𝑀2. 

For any DAG 𝐺, we define the red-blue pebbling number 𝑅𝐵(𝐺) is the smallest positive integer m such that m pebbles 

(blue, red) are involved in the completion of red-blue pebble game with minimal 𝑀1|𝑀2 steps. 

2.   RED-BLUE PEBBLING NUMBER 

Definition 2.1. A directed graph 𝐺 =  (𝑉, 𝐸) is called a layered graph with 𝑛 levels if 𝑉 can be written as a disjoint union 

of non-empty sets 𝑉1,  𝑉2, . . . ,  𝑉𝑛 such that for all 𝑒 =  (𝑢, 𝑣)  ∈  𝐸, there exists 𝑖 such that 𝑢 ∈  𝑉𝑖 and 𝑣 ∈  𝑉𝑖+1. 

Definition 2.2. An r-pyramid of height 𝑛, 𝑃𝑟(𝑛) is a graph (𝑉𝑟(𝑛), 𝐸𝑟(𝑛)) with the following 

properties: 

1. 𝑃𝑟(𝑛)  =  (𝑉𝑟(𝑛), 𝐸𝑟(𝑛)) is a layered graph with height 𝑛 and 𝑛 +  1 levels. Here 

𝑉𝑟(𝑛)  =  𝑉1  ∪   𝑉2  ∪ . . .∪   𝑉𝑛+1, 𝑣𝑖 is the set of vertices on level 𝑖, 1 ≤  𝑖 ≤  𝑛 +  1, and 𝐸𝑟(𝑛) 

are the edges. 

2. 𝑣𝑖 has 𝑛𝑟(𝑖)  =  (𝑟 −  1)  ∗  (𝑖 −  1)  +  1 vertices labeled 𝑣(𝑖, 1),· · · , 𝑣(𝑖, 𝑛𝑟(𝑖)). 

3. vertex 𝑣(𝑖, 𝑗) has 𝑟 incoming edges from vertices 𝑣(𝑖 + 1, 𝑗), 𝑣(𝑖 + 1, 𝑗 + 1),· · · , 𝑣(𝑖 + 1, 𝑗 + 𝑟 −  1). 

4. There are no other edges in 𝑃𝑟(𝑛). 

For any vertex v in the r-pyramid the subgraph rooted at 𝑣 is a star 𝐾1,𝑟. Following is the list of 𝐾1,𝑟  in height n of r-pyramid 

and their corresponding root, vertices and in (𝐾1,𝑟)(𝑖,𝑗),
(𝑖, 𝑗) refers to 𝑖 =  1, 2, 3, . ..(position of 𝐾1,𝑟) and 𝑗 =  1, 2, 3, . . . , 𝑛 

(of height). 

Table 1 

Height Number of 𝐾1,𝑟 Name Root vertex 

1   
 

1 (𝐾1,𝑟)(1,1) 𝑡 

2 𝑟 
 

(𝐾1,𝑟)(1,2) 

(𝐾1,𝑟)(2,2) 

… 
(𝐾1,𝑟)(𝑟,2) 

𝑥12 
𝑥22 
… 
𝑥𝑟2 

 
3 2𝑟 − 1 

 
(𝐾1,𝑟)(1,3)  

(𝐾1,𝑟)(2,3)  

. . . 
(𝐾1,𝑟)(2𝑟−1,3)  

 

𝑥13 
𝑥23 
. . . 

𝑥(2𝑟−1)3 

 

4 3𝑟 − 2 
 

(𝐾1,𝑟)(1,4)  

(𝐾1,𝑟)(2,4)  

. . . 
(𝐾1,𝑟)(3𝑟−2,4)  

 

𝑥14 
𝑥24 
. . . 

𝑥(3𝑟−2)4 

 

… … … … 
𝑛 −  2 (𝑛 −  3)𝑟 −  (𝑛 

−  4) 
 

(𝐾1,𝑟)(1,𝑛−2)  

(𝐾1,𝑟)(2,𝑛−2)  

. . . 
(𝐾1,𝑟)((𝑛−3)𝑟−(𝑛−5),𝑛−2)  

(𝐾1,𝑟)((𝑛−3)𝑟−(𝑛−4),𝑛−2)  

 

𝑥1(𝑛−2) 

𝑥2(𝑛−2) 

. . . 
𝑥((𝑛−3)𝑟−(𝑛−5))(𝑛−2) 

𝑥((𝑛−3)𝑟−(𝑛−4))(𝑛−2) 

 
𝑛 −  1 (𝑛 −  2)𝑟 −  (𝑛 

−  3) 
 

(𝐾1,𝑟)(1,𝑛−1)  

(𝐾1,𝑟)(2,𝑛−1)  

… 

𝑥1(𝑛−1) 

𝑥2(𝑛−1) 

. . . 
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(𝐾1,𝑟)((𝑛−2)𝑟−(𝑛−4),𝑛−1)  

(𝐾1,𝑟)((𝑛−2)𝑟−(𝑛−3),𝑛−1)  

 

𝑥((𝑛−2)𝑟−(𝑛−4))(𝑛−1) 

𝑥((𝑛−2)𝑟−(𝑛−3))(𝑛−1) 

 
𝑛 (𝑛 −  1)𝑟 −  (𝑛 

−  2) 
(𝐾1,𝑟)(1,𝑛)  

(𝐾1,𝑟)(2,𝑛)  

. . . 
(𝐾1,𝑟)((𝑛−1)𝑟−(𝑛−2),𝑛)  

 

𝑥1𝑛 
𝑥2𝑛 
. . . 

𝑥((𝑛−1)𝑟−(𝑛−2))𝑛 

 

Any r-pyramid has 𝑛𝑟 −  (𝑛 −  1) source vertices 𝑠1,  𝑠2, . . . ,  𝑠𝑛𝑟−(𝑛−1) and let the target vertex be 𝑡. Also, level (𝑛 +  1) 

has 𝑛𝑟 −  (𝑛 −  1) vertices. i.e., level 1,2,3,4, . . . , 𝑛 has 1, 𝑟, 2𝑟 −  1, 3𝑟 − 2, . . . , (𝑛 −  1)𝑟 −  (𝑛 −  2) vertices 

respectively. 

Theorem 2.1. For any DAG, 𝐺 =  𝑃𝑟(𝑛), a r-pyramid of height 𝑛, 𝑟 ≥  2, 𝑛 ≥  2, the red blue pebbling number 𝑅𝐵(𝐺)  =

 𝑛(𝑟 −  1)  +  1. 

Proof. By placing blue pebble on each of the source vertices 𝑠1,  𝑠2, . . . ,  𝑠𝑛𝑟−(𝑛−1). 

Consider(𝐾1,𝑟)(1,𝑛) . 

By 𝑀1, replace the blue pebble at each of the source vertices 𝑠1,  𝑠2, . . . ,  𝑠𝑟  by red pebble. By 𝑀3, an additional red pebble 

be placed on 𝑥1𝑛. By 𝑀4, remove the red pebble from 𝑠1 and place it on 𝑠𝑟+1. 

Replacing red pebble by blue pebble on 𝑥1n by 𝑀2. 

Now consider (𝐾1,𝑟)(2,𝑛) . 

By 𝑀3, place the freed red pebble from 𝑥1𝑛 on 𝑥2𝑛. By 𝑀4, free the pebble at 𝑠2 and placethe freed pebble on 𝑠𝑟+2. 

Consider (𝐾1,𝑟)(3,𝑛) . 

By 𝑀3, place an additional red pebble on 𝑥3𝑛. By 𝑀4, free the pebble at 𝑠3 and place the freed pebble on  𝑠𝑟+3. By 𝑀3, 

place one more additional red pebble on 𝑥4𝑛. Continuing like this until 𝑥((𝑛−1)𝑟−(𝑛−2))𝑛  is pebbled with red pebble. 

Among (𝑛 − 1)𝑟 − (𝑛 − 2) vertices of level 𝑛, 𝑥1n is pebbled with blue pebble and each of 𝑥2𝑛, 𝑥3𝑛 , . . . , 𝑥((𝑛−1)𝑟−(𝑛−2))𝑛 

pebbled with red pebbles and source vertices 𝑛𝑟 − (𝑛 − 𝑟), 𝑛𝑟 − (𝑛 −  𝑟 −  1),· · · , 𝑛𝑟 −  (𝑛 −  1) each have a red pebble. 

Consider  (𝐾1,𝑟)((n−2)r−(n−3),n−1) . 

Let us free the red pebble at 𝑠𝑛𝑟−(𝑛−1) and place this freed red pebble in 𝑥((𝑛−2)𝑟−(𝑛−3))(𝑛−1).  

Free the red pebble at  𝑠𝑛𝑟−𝑛  and place this freed red pebble in 𝑥((n−2)r−(n−2))(n−1). And proceeding like this, free the red 

pebble at  𝑠𝑛𝑟−(𝑛−𝑟)and place this freed red pebble in 𝑥11 by replacing the blue pebble by 𝑀1. 

In level (𝑛 − 1), there are (𝑛 − 2)𝑟 − (𝑛 − 3) root vertices, hence there exist (𝑛 − 2)𝑟 − (𝑛 − 3) , 𝐾1,𝑟  exist at height 

(𝑛 −  1). Free the red pebbles from (𝑟 −  1) source vertices, and place this freed red pebble in 𝑟 − 1 vertices (from (𝑛 −

2)𝑟 − (𝑛 − 3) vertices). From right to left, from level 𝑛 vertices red pebbles are being moved to level 𝑛 −  1 vertices, and 

from level (𝑛 −  1) vertices red pebbles are being shifted to level (𝑛 − 2) vertices and so on, until target vertex 𝑡 is reached. 

By 𝑀2, replace red by blue in the target vertex 𝑡.So number of blue pebbles used =𝑛𝑟 −  (𝑛 −  1). 

Number of red pebbles used = 𝑟 +  (𝑛 −  1)𝑟 −  (𝑛 −  2)  −  1 =  𝑛(𝑟 −  1)  +  1. 

Number of 𝑀1|𝑀2 moves =  𝑛𝑟 − (𝑛 −  1)  +  1 +  1 =  𝑛(𝑟 −  1)  +  3. 

Red blue pebble game strategies are as follows: 

• Place a blue pebble on each of the source vertices 𝑠1,  𝑠2, . . . ,  𝑠𝑟 ,  𝑠𝑟+1,  𝑠𝑟+2, ...,  𝑠𝑛𝑟−(𝑛−1). 

• 𝑀1(𝑠1),𝑀1( 𝑠2), . . . , 𝑀1( 𝑠𝑟) 

• 𝑀3(𝑥1𝑛) 

• 𝑀4(𝑠1) 
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• 𝑀1( 𝑠𝑟+1) 

• 𝑀2(𝑥1𝑛) 

• 𝑀3(𝑥2𝑛) 

• 𝑀4( 𝑠2) 

• 𝑀1( 𝑠𝑟+2) 

• 𝑀3(𝑥2𝑛) 

…. 

• 𝑀1( 𝑠𝑛𝑟−(𝑛−1)) 

• 𝑀3(𝑥((𝑛−1)𝑟−(𝑛−2))𝑛) 

• 𝑀4( 𝑠𝑛𝑟−(𝑛−1)) 

• 𝑀1(𝑥1𝑛) 

• 𝑀4( 𝑠𝑛𝑟−(𝑛−2)) 

• 𝑀3(𝑥((𝑛−2)𝑟−(𝑛−3))(𝑛−1)) 

• 𝑀4( 𝑠𝑛𝑟−(𝑛−3)) 

• 𝑀3(𝑥((𝑛−2)𝑟−(𝑛−2))(𝑛−1)) 

…. 

• 𝑀4( 𝑠𝑛𝑟−(𝑛−𝑟)) 

• 𝑀3(𝑥((𝑛−2)𝑟−(𝑛−1))(𝑛−1)) 

…. 

• 𝑀3(𝑥((𝑛−2)𝑟−(𝑛−𝑟+1))(𝑛−1)) 

• 𝑀4(𝑥((𝑛−1)𝑟−(𝑛−2))𝑛) 

• 𝑀3(𝑥((𝑛−2)𝑟−(𝑛−𝑟+2))(𝑛−1)) 

• 𝑀4(𝑥((𝑛−1)𝑟−(𝑛−1))𝑛) 

• 𝑀3(𝑥((𝑛−2)𝑟−(𝑛−𝑟+3))(𝑛−1)) 

and so on until target vertex 𝑡 is pebbled. 

Definition 2.3. A complete r-partite graph is a r-partite graph (i.e.,) a set of graph vertices decomposed into r disjoint sets 

such that no two graph vertices within the same set are adjacent) such that every pair of graph vertices in the r sets are 

adjacent. If there are 𝑝, 𝑞, . . . , 𝑡 graph vertices in the r sets, the complete r-partite graph is denoted by 𝐾𝑝,𝑞,...,𝑡 . 

Theorem 2.2. For any DAG, 𝐺 =  𝐾2,2,1, red-blue pebbling number 𝑅𝐵(𝐺)  =  5. 

Proof. Let 𝑉 (𝐾2,2,1)  =  {𝑠1,  𝑠2, 𝑦1, 𝑦2, 𝑡} 𝑎𝑛𝑑 𝐸(𝐾2,2,1)  =  {𝑠1𝑦1 , 𝑠1𝑦2 ,  𝑠2𝑦1,  𝑠2𝑦2, 𝑦1𝑡, 𝑦2𝑡}. 

Source vertices 𝑠1,  𝑠2  and Target vertex 𝑡. 

Pebbling strategies are as follows: 

• By placing blue pebble on each of the source vertices 𝑠1 and  𝑠2. 

• 𝑀1(𝑠1)𝑎𝑛𝑑𝑀1( 𝑠2) 

• 𝑀3( 𝑦1)𝑎𝑛𝑑𝑀3(𝑦2) 
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• 𝑀4(𝑠1) 

• 𝑀3(𝑡) 

• 𝑀2(𝑡) 

Number of red pebbles involved = 3. 

Number of blue pebbles = 2. 

So red-blue pebbling number 𝑅𝐵(𝐺)  =  5. Number of 𝑀1|𝑀2 moves =3. 

Theorem 2.3. For any DAG, 𝐺 =  𝐾3,4,4,2, red blue pebbling number 𝑅𝐵(𝐺)  =  11. 

Proof. Let 𝑉 (𝐾3,4,4,2)  =  {𝑠1,  𝑠2,  𝑠3,  𝑥1,  𝑥2,  𝑥3,  𝑥4, 𝑦1, 𝑦2, 𝑦3 , 𝑦4, 𝑡1, 𝑡2} 𝑎𝑛𝑑 

𝐸(𝐾3,4,4,2)  =  {𝑠1 𝑥1, 𝑠1 𝑥2, 𝑠1 𝑥3, 𝑠1 𝑥4,  𝑠2 𝑥1,  𝑠2 𝑥2,  𝑠2 𝑥3,  𝑠2 𝑥4,  𝑠3 𝑥1,  𝑠3 𝑥2,  𝑠3 𝑥3,  𝑠3 𝑥4, 

 𝑥1𝑦1,  𝑥1𝑦2,  𝑥1𝑦3,  𝑥1𝑦4,  𝑥2𝑦1,  𝑥2𝑦2,  𝑥2𝑦3,  𝑥2𝑦4,  𝑥3𝑦1,  𝑥3𝑦2 ,  𝑥3𝑦3,  𝑥3𝑦4,  𝑥4𝑦1 ,  𝑥4𝑦2,  𝑥4𝑦3,  𝑥4𝑦4, 

𝑦1𝑡1, 𝑦2𝑡1, 𝑦3𝑡1, 𝑦4𝑡1, 𝑦1𝑡2, 𝑦2𝑡2, 𝑦3𝑡2, 𝑦4𝑡2}. 

Pebbling strategies are given as follows: 

• Blue pebbles are placed on each of the source vertices 𝑠1,  𝑠2 and  𝑠3. 

• 𝑀1(𝑠1),𝑀1( 𝑠2),𝑀1( 𝑠3) 

• 𝑀3( 𝑥1),𝑀3( 𝑥2),𝑀3( 𝑥3),𝑀3( 𝑥4) 

• 𝑀4(𝑠1),𝑀3(𝑦1) 

• 𝑀4( 𝑠2),𝑀3(𝑦2) 

• 𝑀4( 𝑠3),𝑀3(𝑦3) 

• 𝑀3(𝑦4) 

• 𝑀4( 𝑥1),𝑀3(𝑡1) 

• 𝑀4( 𝑥2),𝑀3(𝑡2) 

• 𝑀2(𝑡1),𝑀2(𝑡2) 

Number of red pebbles = 11. 

Number of blue pebbles = 3. 

Number of 𝑀1|𝑀2 steps =5. 

Red Blue pebbling number 𝑅𝐵(𝐺)  =  14. 

Theorem 2.4. For any DAG, 𝐺 =  𝐾3,3,3,3, red blue pebbling number 𝑅𝐵(𝐺)  =  9. 

Proof. Let 𝑉 ( 𝐾3,3,3,3)  =  {𝑠1,  𝑠2,  𝑠3,  𝑥1,  𝑥2,  𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑡1, 𝑡2, 𝑡3} 𝑎𝑛𝑑 

𝐸( 𝐾3,3,3,3)  =  {𝑠1 𝑥1, 𝑠1 𝑥2, 𝑠1 𝑥3,  𝑠2 𝑥1,  𝑠2 𝑥2,  𝑠2 𝑥3,  𝑠3 𝑥1,  𝑠3 𝑥2,  𝑠3 𝑥3, 

 𝑥1𝑦1,  𝑥1𝑦2,  𝑥1𝑦3 ,  𝑥2𝑦1,  𝑥2𝑦2,  𝑥2𝑦3,  𝑥3𝑦1,  𝑥3𝑦2,  𝑥3𝑦3, 

𝑦1𝑡1, 𝑦1𝑡2, 𝑦1𝑡3, 𝑦2𝑡1, 𝑦2𝑡2, 𝑦2𝑡3, 𝑦3𝑡1, 𝑦3𝑡2, 𝑦3𝑡3}. 

Pebbling strategies are as follows: 

• By placing blue pebbles on each of the source vertices 𝑠1,  𝑠2  and  𝑠3. 

• 𝑀1(𝑠1),𝑀1( 𝑠2),𝑀1( 𝑠3) 

• 𝑀3( 𝑥1),𝑀3( 𝑥2),𝑀3( 𝑥3) 

• 𝑀4(𝑠1),𝑀3(𝑦1) 
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• 𝑀4( 𝑠2),𝑀3(𝑦2) 

• 𝑀4( 𝑠3),𝑀3(𝑦3) 

• 𝑀4( 𝑥1),𝑀3(𝑡1) 

• 𝑀4( 𝑥2),𝑀3(𝑡2) 

• 𝑀4( 𝑥3),𝑀3(𝑡3) 

• 𝑀2(𝑡1),𝑀2(𝑡2),𝑀2(𝑡3) 

Number of red pebbles = 6. 

Number of blue pebbles = 3. 

Number of 𝑀1|𝑀2 steps =6. 

Red Blue pebbling number RB(G) = 9. 

Theorem 2.5. For any DAG, 𝐺 =  𝐾4,2,4, red blue pebbling number 𝑅𝐵(𝐺)  =  10. 

Proof. Let 𝑉 (𝐾4,2,4)  =  {𝑠1,  𝑠2,  𝑠3,  𝑠4,  𝑥1,  𝑥2, 𝑡1, 𝑡2, 𝑡3, 𝑡4} 𝑎𝑛𝑑 

𝐸(𝐾4,2,4)  =  { 𝑠4 𝑥1,  𝑠4 𝑥2,  𝑠3 𝑥1,  𝑠3 𝑥2,  𝑠2 𝑥1,  𝑠2 𝑥2, 𝑠1 𝑥1, 𝑠1 𝑥2,  𝑥1𝑡1,  𝑥1𝑡2,  𝑥1𝑡3,  𝑥1𝑡4,  𝑥2𝑡1,  𝑥2𝑡2,  𝑥2𝑡3,  𝑥2𝑡4}. 

Pebbling strategies are as follows: 

• By placing blue pebble on each of the source vertices 𝑠1,  𝑠2,  𝑠3and  𝑠4. 

• 𝑀1(𝑠1),𝑀1( 𝑠2),𝑀1( 𝑠3),𝑀1( 𝑠4) 

• 𝑀3( 𝑥1),𝑀3( 𝑥2) 

• 𝑀4(𝑠1),𝑀3(𝑡1) 

• 𝑀4( 𝑠2),𝑀3(𝑡2) 

• 𝑀4( 𝑠3),𝑀3(𝑡3) 

• 𝑀4( 𝑠4),𝑀3(𝑡4) 

• 𝑀2(𝑡1),𝑀2(𝑡2),𝑀2(𝑡3),𝑀2(𝑡4) 

Number of red pebbles = 6. 

Number of blue pebbles = 4. 

Minimum number of 𝑀1|𝑀2 steps =8. 

Red Blue pebbling number 𝑅𝐵(𝐺)  =  10. 

Theorem 2.6. For any DAG, 𝐺 = 𝐾3,3,3,1, red blue pebbling number 𝑅𝐵(𝐺)  =  9. 

Proof. Let 𝑉 (𝐾3,3,3,1)  =  {𝑠1,  𝑠2,  𝑠3,  𝑥1,  𝑥2,  𝑥3, 𝑦1, 𝑦2 , 𝑦3, 𝑡} 𝑎𝑛𝑑 

𝐸(𝐾3,3,3,1)  =  {𝑠1 𝑥1,  𝑠2 𝑥2,  𝑠3 𝑥3,  𝑥1𝑦1,  𝑥1𝑦2,  𝑥1𝑦3,  𝑥2𝑦1,  𝑥2𝑦2,  𝑥2𝑦3,  𝑥3𝑦1,  𝑥3𝑦2,  𝑥3𝑦3 , 𝑦1𝑡, 𝑦2𝑡, 𝑦3𝑡}. 

Pebbling strategies are as follows: 

• By placing a blue pebble on each of the source vertices 𝑠1,  𝑠2 and  𝑠3. 

• 𝑀1(𝑠1),𝑀1( 𝑠2),𝑀1( 𝑠3) 

• 𝑀3( 𝑥1),𝑀3( 𝑥2),𝑀3( 𝑥3) 

• 𝑀4(𝑠1),𝑀3(𝑦1) 

• 𝑀4( 𝑠2),𝑀3(𝑦2) 

• 𝑀4( 𝑠3),𝑀3(𝑦3) 
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• 𝑀4( 𝑥1),𝑀3(𝑡) 

• 𝑀2(𝑡) 

Number of red pebbles = 6. 

Number of blue pebbles = 3. 

Minimum number of 𝑀1|𝑀2 steps =4. 

Red Blue pebbling number 𝑅𝐵(𝐺)  =  9. 

Theorem 2.7. For any DAG, 𝐺 = 𝐾n,m,s,1, red-blue pebbling number 𝑅𝐵(𝐺)  =  2𝑛 +  𝑥𝑚. 

Proof. Let 𝑉 (𝐾n,m,s,1)  =  {𝑠1,  𝑠2, … , 𝑠𝑛 , 𝑏11,  𝑏12,· · · , 𝑏1𝑚 ,  𝑏21,  𝑏22,· · · ,  𝑏2𝑚, 

𝑏𝑥1,  𝑏𝑥2,· · · , 𝑏𝑥𝑚 , 𝑧1,  𝑧2, … , 𝑧𝑥 , 𝑡} 𝑎𝑛𝑑 

𝐸(𝐾n,m,s,1)  =  {𝑠1𝑏11, 𝑠1 𝑏12,· · · , 𝑠1 𝑏𝑥𝑚 ,  𝑠2 𝑏11,· · · ,  𝑠2 𝑏𝑥𝑚,· · · , 

𝑠𝑛 𝑏11, 𝑠𝑛 𝑏12,· · · , 𝑠𝑛 𝑏𝑥𝑚, 𝑏11𝑧1,  𝑏12𝑧1,· · · , 𝑏1𝑚𝑧1, 

 𝑏21 𝑧2,  𝑏22 𝑧2,· · · ,  𝑏2𝑚 𝑧2,· · · , 𝑏𝑥1𝑧𝑥 ,  𝑏𝑥2𝑧𝑥 ,· · · , 𝑏𝑥𝑚𝑧𝑥 , 𝑧1𝑡,  𝑧2𝑡,· · · , 𝑧𝑥𝑡}. 

Number of Red pebbles required =  𝑛 +  𝑚 +  𝑚 + . . . + 𝑚⏟            
𝑥 𝑡𝑖𝑚𝑒𝑠

 =  𝑛 +  𝑥𝑚. 

Number of blue pebbles required = n. 

Red blue pebbling number 𝑅𝐵(𝐺)  =  2𝑛 +  𝑥𝑚. 

Minimum number of 𝑀1|𝑀2 steps =𝑛 +  1 

3.   CONCLUSION 

In this paper, we find the Red-Blue pebbling number of r-pyramid, and complete r-partite graphs of 

𝐾2,2,1,𝐾3,4,4,2,𝐾3,3,3,3,𝐾4,2,4,𝐾3,3,3,1,𝐾n,m,s,1. To find the Red-Blue pebbling number of 𝐾𝑠1, 𝑠2,..., 𝑠𝑟 where  𝑠1  ≥  𝑠2  ≥ · · · ≥

 𝑠𝑟  is an open problem. 
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