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Abstract: Red-Blue pebble game was introduced by Hong and Kung [1]. Given any DAG, ¢ = (V, E), a configuration
C on G is a function C : V (G) — {R, B, 0} where V (G) can be partitioned into V(G),V,(G) and V3(G) in such a
way that V{(G) comprises of just the vertices having red pebbles (R),V,(G) is just those have blue pebbles (B), and
V3(G) is the empty set that is vertices have no pebbles. Define the size |C| of a configuration C to be the total number

of pebbles, that is [C| = X;cy C(V) . In this paper, we determine the min|C| pebbles used in the completion of

Red-Blue pebble game for different Directed Acyclic graphs (DAG) such as r-pyramid, and complete r-partite
graphs.

Keywords: Red-Blue pebble game, different Directed Acyclic graphs.

1. INTRODUCTION

Here, a graph G is a directed acyclic graph with vertices V(G) and edge set E(G) is the set of ordered pair of vertices
(v, vj) such thati # jandv;,v; € V (G). We say that a vertex v; is a direct predecessor of a vertex v; if there is a directed
edge from v; to v; and the edge v;v; is called the incoming edge of v; and outgoing edge of v;. A vertex in a DAG, with no
incoming edges is called a source vertex and a vertex with no outgoing edges is called a target vertex.

We assume that the set of source vertices are different from that of target vertices. Blue pebbles represent data that is stored
in slow memory and red pebbles represent data that is stored in fast memory [2]. There are no restrictions on the number of
blue pebbles that can reside on G at any given time, but we can never have more than S red pebbles on DAG ¢ = (V,E)
where S represents the size of the fast memory. In the begining there is a blue pebble on each of the source vertices called
as initial configuration and the game is completed when we have a blue pebble on each of the target vertices called as final
configuration.

A pebbling move is an ordered pair of configurations, the second of which follows from the first according to certain
rules.[3]

Pebbling move 1 that is M1 is defined as A red pebble may be placed on any vertex that has a blue pebble” i.e.,) Replace
a blue pebble by a red pebble.

Pebbling move 2 that is M2 is defined as A blue pebble may be placed on any vertex that has a red pebble” that is replace
ared pebble by a blue pebble.

Pebbling move 3 that is M3 is defined as ”‘Place a red pebble on a vertex for which all immediate predecessors are carrying
ared pebble”” (when the vertex has already a blue pebble,

we replace it).

Pebbling move 4 that is M4 is ‘A pebble red or blue may be removed from any vertex’. Since the size of our fast memory
is limited, we will have to apply moves M2 and M4 sometimes.

A pebbling strategy is a sequence of the pebbling move M1, M2, M3 and M4 on the vertices of a DAG, which results in the
completion of red blue pebble game.
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Pebbling moves M1|M2 represent data movements that consume much time and energy, so we want to minimize their
number. Each application of M1 or M2 counts as one M1|M2.

For any DAG G, we define the red-blue pebbling number RB(G) is the smallest positive integer m such that m pebbles
(blue, red) are involved in the completion of red-blue pebble game with minimal M1|M2 steps.

2. RED-BLUE PEBBLING NUMBER

Definition 2.1. A directed graph G = (V,E) is called a layered graph with n levels if IV can be written as a disjoint union
of non-empty sets V;, V,,..., V, such that foralle = (u,v) € E, there exists i such thatu € V;andv € V.

Definition 2.2. An r-pyramid of height n, P.(n) is a graph (V;.(n), E,.(n)) with the following

properties:

1. B.(n) = (V.(n),E,(n)) is a layered graph with height n and n + 1 levels. Here

V,(n) =V, U V, U...U V,,q,viis the set of verticeson level i,1 < i < n + 1,and Er(n)

are the edges.

2.v;hasn,.(i) = (r — 1) * (i — 1) + 1 vertices labeled v(i, 1),- - -, v(i, n,-(i)).

3. vertex v (i, j) has r incoming edges from vertices v(i + 1,j),v(i+1,j + 1), --,v(i+1,j +r — 1).
4. There are no other edges in B.(n).

For any vertex v in the r-pyramid the subgraph rooted at v is a star K; ,.. Following is the list of K; ,- in height n of r-pyramid
and their corresponding root, vertices and in (Kl‘r)(i iy (i,j) referstoi = 1,2,3,..(positionof K; ,)andj = 1,2,3,...,n

(of height).

Table 1
Height | Number of K, Name Root vertex
1 1 K1) a1 ¢
2 r K1) a,2) X12
(Kl,r)(z,z) X22
(Kl,r) (r,2) Xra
3 2r—1 (K1) 3 X13
(K1,r)(2,3) X23
(Kl,r)(zr—1,3) X(2r-1)3
4 3r—2 (K1,r)(1,4) X14
(K1,r)(2,4) X24
(K1) 3r-2,4) X@r-2)4
n— 2 (n—=3)r —(n (Kl,r)(l,n—z) X1(n-2)
) (K1,r)(2,n—2) X2(n-2)
(K11 (n-3)r-(n-5)n-2) X((n-3)r—(n-5))(n-2)
(K1,r) (n=-3)r-(n-4)n-2) X((n-3)r-(n-4)(n-2)
n—1 (n—2)r—(n (Kl,r)(l,n—l) X1(n-1)
- 3) K1) 2n-1) X2(n-1)
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(Kl,r)((n—z)r—(n—4),n—1) x((n—2)r—(n—4))(n—1)
(K1,r) (n-2)r—(n—3)m-1) X((n-2)r-(n-3))(n-1)
n (Tl - 1)T - (Tl (Kl,r)(l,n) X1n
- 2) (Kl,r)(z,n) Xan
(K1,0) (n-1)r-(n-2)m) X((n-1r-(m-2))n
Any r-pyramid has nr — (n — 1) source vertices Sy, S, ..., Spr—(n-1) and let the target vertex be t. Also, level (n + 1)

has nr — (n — 1) vertices. i.e., level 1,2,3,4,...,n has 1,r,2r — 1,3r —2,...,(n — 1)r — (n — 2) vertices
respectively.

Theorem 2.1. For any DAG, G = P.(n), ar-pyramid of heightn, r > 2,n > 2, the red blue pebbling number RB(G) =
nir — 1) + 1.

Proof. By placing blue pebble on each of the source vertices Sy, S,..., Spr—(n-1)-
Consider(K; ) 1,n) -

By M1, replace the blue pebble at each of the source vertices s;, S,,..., S, by red pebble. By M3, an additional red pebble
be placed on x;,,. By M4, remove the red pebble from s; and place it on s, ;.

Replacing red pebble by blue pebble on x;, by M2.

Now consider (K ) 2n) -

By M3, place the freed red pebble from x;,, on x,,. By M4, free the pebble at s, and placethe freed pebble on s, .
Consider (K1) (3n) -

By M3, place an additional red pebble on x3,,. By M4, free the pebble at s; and place the freed pebble on s,.,5. By M3,
place one more additional red pebble on x,,. Continuing like this until X, _1)r_(n—2))n is pebbled with red pebble.

Among (n — 1)r — (n — 2) vertices of level n, xy, is pebbled with blue pebble and each of x5,, X3y, ..., X(n-1)r—(n-2))n
pebbled with red pebbles and source verticesnr — (n —r),nr — (n— r — 1),---,nr — (n — 1) each haveared pebble.

Consider (K1) (n-2)r-m-3)n-1) -
Let us free the red pebble at s,,;,-_,_1) and place this freed red pebble in X(n_2)r—(n-3))(n-1)-

Free the red pebble at s,,_, and place this freed red pebble in X((n_2)r—n-2))(n-1)- And proceeding like this, free the red
pebble at s,,_,_r)and place this freed red pebble in x;; by replacing the blue pebble by M1.

In level (n — 1), there are (n — 2)r — (n — 3) root vertices, hence there exist (n — 2)r — (n — 3) , Ky, exist at height
(n — 1). Free the red pebbles from (r — 1) source vertices, and place this freed red pebble in r — 1 vertices (from (n —
2)r — (n — 3) vertices). From right to left, from level n vertices red pebbles are being moved to level n — 1 vertices, and
from level (n — 1) vertices red pebbles are being shifted to level (n — 2) vertices and so on, until target vertex t is reached.

By M2, replace red by blue in the target vertex t.So number of blue pebbles used =nr — (n — 1).
Number of red pebblesused=r + (n — Dr — (n — 2) =1 =n(r — 1) + 1.

Number of M1|M2moves=nr — (n — 1) + 1+ 1 =n(r — 1) + 3.

Red blue pebble game strategies are as follows:

* Place a blue pebble on each of the source vertices sy, Sz,.-., Sys Sri1, Sr425 -+ Snr—(n—1)-

o M1(sy),M1(s,),...,M1(s,)

© M3(xyn)

© M4(sy)
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* M1(sp41)
o M2(x1p)
* M3(xzp)
« M4(sy)

* MI1(sp42)
o M3(x3,)

* M1(Spr—(n-1))
M3(X(n-1)r-(m-2)n)

* MA4( Snr—(n—1))

* M1(x1n)

* M4( Snr—(n—z))

* M3(x(n-2)yr-n-3)mn-1))

* M4( Snr—(n—S))

« M3 (X((n_z)r—(n—Z))(n-l))

* M4( Snr—(n—r))

s M3(X(n-2)r-(n-1)n-1))

M3(X((n-2)r-(n-r+1))(n-1))
s MAX(n-1)r-(m-2)m)
M3(X((n-2)r-(n-r+2))(n-1))
M4 (X (n-1)r-(mn-1)n)

* M3(X(n-2)yr-(n-r+3))(n-1))

and so on until target vertex t is pebbled.

Definition 2.3. A complete r-partite graph is a r-partite graph (i.e.,) a set of graph vertices decomposed into r disjoint sets
such that no two graph vertices within the same set are adjacent) such that every pair of graph vertices in the r sets are
adjacent. If there are p, g, ..., t graph vertices in the r sets, the complete r-partite graph is denoted by Ky, 4 ..

Theorem 2.2. For any DAG, G = K, 1, red-blue pebbling number RB(G) = 5.

Proof. Let V (Ky21) = {51, S2,¥1, Y2, t} and E(K;21) = {$1V1,51Y2, S21, S2¥2, Y1t, Y2t}
Source vertices s;, s, and Target vertex t.

Pebbling strategies are as follows:

* By placing blue pebble on each of the source vertices s; and s,.

e M1(sy)andM1(s;)

* M3(y,)andM3(y,)
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M4(sy)
M3(t)
M2(t)

Number of red pebbles involved = 3.

Number of blue pebbles = 2.

So red-blue pebbling number RB(G) = 5. Number of M1|M2 moves =3.

Theorem 2.3. For any DAG, G = K344, red blue pebbling number RB(G) = 11.

Proof. Let V (K3,4,4,2) = {S1, S2, S3, X1, X2, X3, X4, Y1, Y2, V3, Yar by, t2} and

E(K34,42) = {S1X1,51 X2,S1 X3,S1 X4, Sz X1, Sz X2, Sz X3, Sp X4, S3 X1, S3 X2, S3 X3, S3 X4,
X1Y1, X1YV2, X1YV3, X1Var X2YV1, X2Y2, X2Y3, X2YVar X3YV1, X3Y2, X3YV3, X3YVar X4YV1, X4Y2, X4YV3, XaYas

Vit Yati, Y3ty Yaty, Yato, Yata, Yatz, Yata}

Pebbling strategies are given as follows:

Blue pebbles are placed on each of the source vertices s;, s, and s3.
M1(s;), M1(s,), M1( s3)

M3(x,), M3(x5), M3(x3), M3( x,)

M4(s;), M3(yy1)

MA4(s,), M3(y,)

M4(s3), M3(y3)

M3(y,)

M4(x,), M3(ty)

M4( x,), M3(t,)

M2(ty), M2(t,)

Number of red pebbles = 11.

Number of blue pebbles = 3.

Number of M1|M2 steps =5.

Red Blue pebbling number RB(G) = 14.

Theorem 2.4. For any DAG, G = Kj 333, red blue pebbling number RB(G) = 9.

PrOOf- Let |74 (K3’3’3’3) = {51, So, S3’ X1, X2, x3’ yll YZ; Y3; tll tZ: t3} and

E( K3,3,3,3) = {81 X1,S1 X2, 81 X3, S2 X1, Sp X3, Sz X3, S3 X1, S3 X, S3 X3,
X1V1, X1YV2, X1Y3, X2Y1, X2YV2, X2Y3, X3YV1, X3Y2, X33,

Vity, Yito, Yats, Yate, Yata, Vats, Yate, Yata, Ysts)

Pebbling strategies are as follows:

By placing blue pebbles on each of the source vertices s;, s, and s;.
M1(sy), M1(s,), M1(s3)

M3(x,),M3(x;), M3(x3)

M4(s,), M3(y1)
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M4(sy), M3(y,)
M4(s3), M3(y3)
M4( x,), M3(ty)
M4( x,), M3(t,)
M4( x3), M3(t3)
M2(ty), M2(t,), M2(t3)

Number of red pebbles = 6.

Number of blue pebbles = 3.

Number of M1|M2 steps =6.

Red Blue pebbling number RB(G) =9.
Theorem 2.5. For any DAG, G = K, ,,, red blue pebbling number RB(G) = 10.

Proof. Let V (Ky4) = {51, Sz, S3, S4, X1, X2, 1,82, 3, t4} and

E(Kyz4) = {54 X1, S4 X2, S3 X1, S3 X3, Sz X1, Sz X3, S1 X1, S1 X, X1b1, X1tp, Xqtz, X1la, Xaty, Xobs, Xots, Xoty}.

Pebbling strategies are as follows:

By placing blue pebble on each of the source vertices s;, S,, Szand s,.

M1(sy), M1(sy), M1(s3), M1( sy)
M3(x1), M3(x3)

M4(sy), M3(ty)

M4(s;), M3(t;)

M4(s3), M3(t3)

M4(s,), M3(t,)
M2(ty), M2(t,), M2(t3), M2(t,)

Number of red pebbles = 6.

Number of blue pebbles = 4.

Minimum number of M1|M?2 steps =8.

Red Blue pebbling number RB(G) = 10.
Theorem 2.6. For any DAG, G = K333, red blue pebbling number RB(G) = 9.

Proof. LetV (K3331) = {S1, Sz, S3, X1, X2, X3,¥1,¥2, Y3, t} and

E(K3,3,3,1) = {81 X1, Sz X2, S3 X3, X1V1, X1Y2, X1V3, X2Y1, X2Y2, X2Y3, X3V1, X3Y2, X3Y3, V1L, VoL, Y3t}

Pebbling strategies are as follows:

By placing a blue pebble on each of the source vertices s;, s, and s3.

M1(sy), M1(s,), M1( s3)
M3(x1),M3(x;), M3( x3)
M4(s,), M3(y,)

M4(s,), M3(y,)

M4(s3), M3(y3)
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o M4(xy),M3(t)

o M2(t)

Number of red pebbles = 6.

Number of blue pebbles = 3.

Minimum number of M1|M2 steps =4.

Red Blue pebbling number RB(G) = 9.

Theorem 2.7. For any DAG, G = K, 51, red-blue pebbling number RB(G) = 2n + xm.

Pl‘OOf. Let V (Kn,m,s,l) = {51, 52, ...,Sn, bll' blz,' . ,blm, b21, b22,' tcy, b2m,

by1, byoy ** byms Z1, Zo, o, Zy, t} and
E(Kyms1) = {S1b11,51 b1ay =+, S1 by, S2 bi1s = +5 3 by -+
Sp b11,Sp b1z, + + ) Sp by, b1121, b1z, -+ bimZy,
ba1 23, bag 23, -, bam Zayt -+ bx1Zy, DxaZyy v 0 bymZy, Z1t, Zat, -, Zyc L)

Number of Red pebbles required=n+ m + m+...+ m=n + xm.

x times

Number of blue pebbles required = n.
Red blue pebbling number RB(G) = 2n + xm.
Minimum number of M1|M2 steps=n + 1
3. CONCLUSION

In this paper, we find the Red-Blue pebbling number of r-pyramid, and complete r-partite graphs of
K5 21,K34,42,K3333.K424,K3331,Knms,1- To find the Red-Blue pebbling number of K;

S, is an open problem.

L5y s, Where §¢ = 55 =+ =
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